Classification of Low Velocity Impactors Using Spiral Sensing of Acousto-Ultrasonic Waves

The proposed method presented in this thesis is especially applicable for SHM where sensors cannot be widely or randomly distributed. Thus a strategic organization and localization of the sensors is achieved by implementing the geometric configuration of Theodorous Spiral Sensor Cluster (TSSC). The performance of TSSC in characterizing the impactor types are compared with other conventional sensor clusters (e.g. square, circular, random etc.) and it is shown that the TSSC is advantageous over conventional localized sensor clusters. It was found that the TSSC provides unbiased sensor voting that boosts sensitivity towards classification of impact events. To prove the concept, a coupled field (multiphysics) finite element model (CFFEM) is developed and a series of experiments were performed. The dominant frequency band (DBF) along with a Lag Index (LI) feature extraction technique was found to be suitable for classifying the impactors. Results show that TSSC with DBF features increase the sensitivity of impactor's elastic modulus, if the covariance of the AUS from the TSSC and other conventional sensor clusters are compared. It is observe that for the impact velocity, geometric and mechanical properties studied herein, longitudinal and flexural waves are excited, and there are quantifiable differences in the Lamb wave signatures excited for different impactor materials. It is found that such differences are distinguishable only by the proposed TSSC, but not by other state-of-the-art sensor configurations used in SHM. This study will be useful for modeling an inverse problem needed for classifying impactor materials and the subsequent reconstruction of force histories via neural network or artificial intelligence.
Finally an alternative novel approach is proposed to describe the Probability Map of Impact (PMOI) over the entire structure. PMOI could serve as a read-out tool for simultaneously identifying the impact location and the type of the impactor that has impacted the structure. PMOI is intended to provide high risk areas of the space structures where the incipient damage could exist (e.g. area with PMOI > 95%) after an impact.